## Energy shifts and the S matrix in degenerate perturbation theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1979 J. Phys. A: Math. Gen. 121321
(http://iopscience.iop.org/0305-4470/12/8/024)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 19:53

Please note that terms and conditions apply.

# Energy shifts and the $\boldsymbol{S}$ matrix in degenerate perturbation theory 

M A J Michels $\dagger$ and L G Suttorp<br>Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65, Amsterdam, The Netherlands

Received 15 November 1978


#### Abstract

Adiabatic perturbation theory is employed to establish a relationship between the $S$ matrix and the averaged energy shift of a degenerate level.


Field-theoretical methods have proved extremely useful in perturbation theory for stationary energy-eigenvalue problems. In particular, a simple connection between the energy shift and the scattering matrix in the Feynman formalism has been applied before to lowest-order processes; such a connection may already be understood heuristically on the basis of the Born approximation (e.g. Akhiezer and Berestetskii 1953). A general relationship has been obtained by Rodberg (1958), who used a linked-cluster expansion and showed how the energy shift of a non-degenerate state then follows from the connected part of the $S$ matrix (see also Michels and Suttorp 1978).

The linked-cluster expansion in fact relies upon the choice of the non-degenerate unperturbed state as a new vacuum state; consequently Rodberg's treatment cannot be applied in degenerate perturbation theory. Yet a generalisation of his final result does exist for the averaged energy shift of a degenerate level, as we shall prove now along different lines.

We study a time-independent Hamiltonian $H$ that is the sum of an unperturbed part $H_{0}$ and a perturbation $H_{1}=\lambda V$. Let $E_{0}$ be a degenerate eigenvalue in the discrete part of the spectrum of $H_{0}$, and let $\left|\psi_{\alpha}\right\rangle$ be normalised eigenstates of $H$ with eigenvalues $E_{\alpha}=E_{0}+\Delta E_{\alpha}$ that reduce to $E_{0}$ for $\lambda$ tending to zero. Since $\lambda \mathrm{d} H / \mathrm{d} \lambda=H_{1}$ and $\lambda \mathrm{d} / \mathrm{d} \lambda\left\langle\psi_{\alpha} \mid \psi_{\alpha}\right\rangle=0$ we may write for the energy shifts $\Delta E_{\alpha}$ :

$$
\begin{equation*}
\lambda(\mathrm{d} / \mathrm{d} \lambda) \Delta E_{\alpha}=\lambda(\mathrm{d} / \mathrm{d} \lambda)\left\langle\psi_{\alpha}\right| H-E_{0}\left|\psi_{\alpha}\right\rangle=\left\langle\psi_{\alpha}\right| H_{1}\left|\psi_{\alpha}\right\rangle \tag{1}
\end{equation*}
$$

(cf. Pines 1961) and hence for the average $\overline{\Delta E}$ of these energy shifts:

$$
\begin{equation*}
\lambda(\mathrm{d} / \mathrm{d} \lambda) \overline{\Delta E} \operatorname{Tr} P=\operatorname{Tr}\left(H_{1} P\right) \tag{2}
\end{equation*}
$$

with $P=\Sigma_{\alpha}\left|\psi_{\alpha}\right\rangle\left\langle\psi_{\alpha}\right|$ the projector onto the subspace of perturbed eigenstates.
Starting from the identity (2) we shall derive the connection between $\overline{\Delta E}$ and the $S$ matrix. To that end we go over to the time-dependent interaction representation; moreover the perturbation is switched on adiabatically, so that it takes the form:

$$
\begin{equation*}
H_{1 \epsilon}(t)=\lambda_{\epsilon}(t) \exp \left(\mathrm{i} H_{0} t\right) V \exp \left(-\mathrm{i} H_{0} t\right), \quad \lambda_{\epsilon}(t)=\lambda \exp (-\epsilon|t|) \tag{3}
\end{equation*}
$$

[^0]The time dependence of the perturbed system is governed by the unitary evolution operator $U_{\epsilon}\left(t, t^{\prime}\right)$, which satisfies the differential equation

$$
\begin{equation*}
\mathrm{i}(\partial / \partial t) U_{\epsilon}\left(t, t^{\prime}\right)=H_{1 \epsilon}(t) U_{\epsilon}\left(t, t^{\prime}\right), \quad U_{\epsilon}(t, t)=1 \tag{4}
\end{equation*}
$$

In terms of this operator one can prove the following relation between the projector $P$ and the corresponding projector $P_{0}$ of the unperturbed level (Dmitriev 1975):

$$
\begin{equation*}
P=\lim _{\epsilon \rightarrow 0} U_{\epsilon}(0, \pm \infty) P_{0} U_{\epsilon}( \pm \infty, 0) . \tag{5}
\end{equation*}
$$

If the perturbation is sufficiently small the operations $P P_{0}$ and $P_{0} P$ constitute a non-singular linear mapping between the perturbed and the unperturbed states. Consequently we may write the projector $P$ as:

$$
\begin{equation*}
P=P_{-} P_{0}\left(P_{0} P_{+} P_{-} P_{0}\right)^{-1} P_{0} P_{+} \tag{6}
\end{equation*}
$$

with $P_{ \pm}=P$ given by (5). Upon substituting (6) with (5) into (2) and using $\operatorname{Tr} P=\operatorname{Tr} P_{0}$ we obtain for the averaged energy shift in the adiabatic formalism:
$\lambda(\mathrm{d} / \mathrm{d} \lambda) \overline{\Delta E} \operatorname{Tr} P_{0}=\lim _{\epsilon \rightarrow 0} \operatorname{Tr}\left[\left(P_{0} U_{\epsilon}(\infty,-\infty) P_{0}\right)^{-1} P_{0} U_{\epsilon}(\infty, 0) H_{1} U_{\epsilon}(0,-\infty) P_{0}\right]$.
Between the square brackets at the right-hand side the adiabatic $S$ matrix $S_{\epsilon} \equiv$ $P_{0} U_{\epsilon}(\infty,-\infty) P_{0}$ shows up. To deal with the remaining part of (7) let us consider the identity:
$\mathrm{i}(\partial / \partial t)\left\{U_{\epsilon}\left(t^{\prime \prime}, t\right) \mathrm{i} \lambda_{\epsilon}\left(t^{\prime}\right)\left(\delta / \delta \lambda_{\epsilon}\left(t^{\prime}\right)\right) U_{\epsilon}\left(t, t^{\prime \prime}\right)\right\}=U_{\epsilon}\left(t^{\prime \prime}, t^{\prime}\right) H_{1 \epsilon}\left(t^{\prime}\right) U_{\epsilon}\left(t^{\prime}, t^{\prime \prime}\right) \delta\left(t^{\prime}-t\right)$,
which follows by first applying (4), and then (3) and the definition:
$\left(\delta / \delta \lambda_{\epsilon}\left(t^{\prime}\right)\right) \lambda_{\epsilon}(t)=\delta\left(t^{\prime}-t\right)$
of the functional derivative. From (8) we get after integration over $t$ from $t^{\prime \prime}$ to $t$ :
$\mathrm{i} \lambda_{\epsilon}\left(t^{\prime}\right)\left(\delta / \delta \lambda_{\epsilon}\left(t^{\prime}\right)\right) U_{\epsilon}\left(t, t^{\prime \prime}\right)=U_{\epsilon}\left(t, t^{\prime}\right) H_{1 \epsilon}\left(t^{\prime}\right) U_{\epsilon}\left(t^{\prime}, t^{\prime \prime}\right), \quad\left(t>t^{\prime}>t^{\prime \prime}\right)$.
When this result, with $t=\infty, t^{\prime}=0, t^{\prime \prime}=-\infty$, is inserted in (7) the right-hand side is expressed completely in terms of $S_{\varepsilon}$. In view of the trace operation we may formally write:

$$
\begin{equation*}
\lambda(\mathrm{d} / \mathrm{d} \lambda) \overline{\Delta E} \operatorname{Tr} P_{0}=\operatorname{limin}_{\epsilon \rightarrow 0} \lambda_{\epsilon}(0)\left(\delta / \delta \lambda_{\epsilon}(0)\right) \operatorname{Tr} \ln S_{\epsilon} \tag{11}
\end{equation*}
$$

So the averaged energy shift $\overline{\Delta E}$ can be obtained from the adiabatic $S$ matrix by performing a functional differentiation of $\operatorname{Tr} \ln S_{\epsilon}$ with respect to the time-dependent coupling constant.

From the well-known Dyson series expansion of the operator $U_{\epsilon}$ in powers of $\lambda$ an expansion of the same general structure follows for $\operatorname{Tr} \ln S_{\epsilon}$, namely,
$\operatorname{Tr} \ln S_{\epsilon}=\sum_{n=1}^{\infty} \int_{-\infty}^{\infty} \mathrm{d} t_{1} \ldots \mathrm{~d} t_{n} \operatorname{Tr}\left(P_{0} T\left(t_{1}, \ldots, t_{n}\right) P_{0}\right) \lambda_{\epsilon}\left(t_{1}\right) \ldots \lambda_{\epsilon}\left(t_{n}\right) ;$
here the operator $T\left(t_{1}, \ldots, t_{n}\right)$ need not be specified in detail, apart from its behaviour under time translation:

$$
\begin{equation*}
T\left(t_{1}+\tau, \ldots, t_{n}+\tau\right)=\exp \left(\mathrm{i} H_{0} \tau\right) T\left(t_{1}, \ldots, t_{n}\right) \exp \left(-\mathrm{i} H_{0} \tau\right) \tag{13}
\end{equation*}
$$

Combining (12) with (11) and (9) we find:
$\overline{\Delta E} \operatorname{Tr} P_{0}=\sum_{n=1}^{\infty} \mathrm{i} \lambda^{n} \int_{-\infty}^{\infty} \mathrm{d} t_{1} \ldots \mathrm{~d} t_{n} \frac{1}{n} \sum_{m=1}^{n} \delta\left(t_{m}\right) \operatorname{Tr}\left(P_{0} T\left(t_{1}, \ldots, t_{n}\right) P_{0}\right)$,
where in the integral at the right-hand side the adiabatic limit has been taken. Comparison of (12) and (14) shows that $\overline{\Delta E}$ may be calculated in the same way as $\mathrm{Tr} \ln S_{0}$, the only difference being, apart from a factor $\mathrm{i} / \operatorname{Tr} P_{0}$, the suppression of one time integration.

Let us now formally put the energies of the final and initial projectors in (12) and (14) equal to $E_{\mathrm{f}}$ and $E_{\mathrm{i}}$, respectively; the scattering matrix $S_{0}$ will accordingly be denoted as $S_{\mathrm{f}}$. When the time variables $t_{j}$ in (14) are replaced by $t_{j}+\tau$ we then have in view of (13):
$\overline{\Delta E} \operatorname{Tr} P_{0}=\sum_{n=1}^{\infty} \mathrm{i} \exp \left(\mathrm{i}\left(E_{\mathrm{f}}-E_{\mathrm{i}}\right) \tau\right] \lambda^{n} \int_{-\infty}^{\infty} \mathrm{d} t_{1} \ldots \mathrm{~d} t_{n} \frac{1}{n}$

$$
\begin{equation*}
\times \sum_{m=1}^{n} \delta\left(t_{m}+\tau\right) \operatorname{Tr}\left(P_{0} T\left(t_{1}, \ldots, t_{n}\right) P_{0}\right) \tag{15}
\end{equation*}
$$

Upon bringing the factor $\mathrm{i} \exp \left[\mathrm{i}\left(E_{\mathrm{f}}-E_{\mathrm{i}}\right) \tau\right]$ to the left-hand side, integrating from $\tau=-\infty$ to $\tau=\infty$ and using (12) we arrive at the relation

$$
\begin{equation*}
-2 \pi \mathrm{i} \delta\left(E_{\mathrm{f}}-E_{\mathrm{i}}\right) \overline{\Delta E} \operatorname{Tr} P_{0}=\operatorname{Tr} \ln S_{\mathrm{f}} . \tag{16}
\end{equation*}
$$

This is a generalisation of Rodberg's result, which was also obtained by adiabatic perturbation theory, but in a completely different way. In particular our starting equation (7) for the energy shift in the adiabatic formalism does not contain an explicit factor $\epsilon$, owing to which the step of actually putting $\epsilon=0$ is facilitated.

The above expressions enable one to obtain the averaged energy shift $\overline{\Delta E}$ of a stationary system by applying the covariant Feynman formalism. It should be noticed, however, that in general this cannot be achieved by a straightforward evaluation of the $S$ matrix, since the existence of the adiabatic limit is not proved for the individual Feynman diagrams contributing to (14). In a forthcoming paper we shall develop a systematic method for resumming the integrands $P_{0} T\left(t_{1}, \ldots, t_{n}\right) P_{0}$ of these Feynman diagrams in such a way that each term may be calculated separately in the limit $\epsilon \rightarrow 0$.

## Acknowledgments

This investigation is part of the research program of the Stichting voor Fundamenteel Onderzoek der Materie (FOM) which is financially supported by the Nederlandse Organisatie voor Zuiver-Wetenschappelijk Onderzoek (ZWO).

## References

[^1]
[^0]:    $\dagger$ Present address: Koninklyke/Shell-Laboratorium, Amsterdam.

[^1]:    Akhiezer A I and Berestetskii V B 1953 Quantum Electrodynamics (Moscow: Gostekhizdat) (English transl 1965 (New York: Interscience))
    Dmitriev Y 1975 Int. J. Quant. Chem. 91033
    Michels M A J and Suttorp L G 1978 Physica 93A 559
    Pines D 1961 The Many-Body Problem (New York: Benjamin) p 43
    Rodberg L S 1958 Phys. Rev. 110277

